Nordic Structures is the leading innovator in engineered wood products. Its resource comes from responsibly managed lands within the regional boreal forest. Vertical integration, from forest to structure, bolstered by Nordic’s experienced design and development team, ensures consistent quality and unparalleled level of service.
TABLE OF CONTENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ii</td>
<td>General Notes</td>
</tr>
<tr>
<td>iii</td>
<td>List of Details</td>
</tr>
<tr>
<td>vi</td>
<td>Nordic I-joists</td>
</tr>
<tr>
<td>vii</td>
<td>I-joist Marking</td>
</tr>
<tr>
<td>viii</td>
<td>Fasteners and Hangers</td>
</tr>
<tr>
<td>ix</td>
<td>Nail Spacing</td>
</tr>
</tbody>
</table>

1

TYPICAL FLOOR FRAMING AND CONSTRUCTION DETAILS

2

WEB STIFFENERS AND CANTILEVERS

3

OPENINGS AND RIM BOARDS

4

SPRINKLER PIPE INSTALLATION

5

TYPICAL ROOF FRAMING AND CONSTRUCTION DETAILS
1.0 General

1.1 This document supersedes all previous versions. For the latest version, consult nordic.ca or contact Nordic Structures.

1.2 While this guide emphasizes residential construction, much of the basic design information can be used for other construction applications. Review by a design professional is required for applications beyond the scope of this document.

1.3 Refer to the Nordic Joist Technical Guide (NS-GT3) for the maximum spans, or to the floor or roof layout provided by your distributor.

1.4 For more information, consult nordic.ca or contact Nordic Structures.

2.0 Structure

2.1 For APA Rim Board Plus specifications, see ANSI/APA PRR 410, Standard for Performance-rated Engineered Wood Rim Boards.

3.0 Fire Resistance

3.1 Numerous fire-rated assemblies incorporate I-joists and wood structural panels. These floor-ceiling and roof-ceiling assemblies, recognized as fire-rated constructions by building codes, are illustrated in the APA Product Report PR-S274, Fire-Rated Assemblies.

3.2 A rim board can also serve as a fire barrier when it is installed in a continuous assembly on top of a wall, parallel or perpendicular to the joists. Fire-resistant rim board assemblies are shown in the APA Data File: APA Rim Board in Fire-Rated Assemblies, Form D350.

3.3 In some designs, sprinkler systems are used with I-joists. There are a variety of sprinkler attachments that incorporate fasteners permitted by the National Fire Protection Association (NFPA), design load assumptions published by the NFPA, and published design fastener capacities. These sprinkler attachments are illustrated in details 9.

3.4 The 2018 and 2015 International Residential Codes (Section R302.13) require fire protection of floor assemblies. APA System Report SR-405, Fire Protection of Floors Constructed with Prefabricated Wood I-Joists for Compliance with the International Residential Code, offers options for fire protection of floors constructed with Nordic I-joists.

3.5 For more information, refer to Chapter 4 of the Nordic Joist Technical Guide (NS-GT3).
LIST OF DETAILS

1 Typical Floor Framing and Construction Details

<table>
<thead>
<tr>
<th>Title</th>
<th>Drawing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Floor Framing and Construction Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Notes - Floor Systems</td>
<td>1.i</td>
<td></td>
</tr>
<tr>
<td>Typical Floor Framing</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>I-Joist Blocking Panel</td>
<td>1a</td>
<td>1.2</td>
</tr>
<tr>
<td>Rim Board</td>
<td>1b</td>
<td>1.3</td>
</tr>
<tr>
<td>Rim Board and Rim Joist</td>
<td>1b-1</td>
<td>1.4</td>
</tr>
<tr>
<td>Double Rim Board - Option 1</td>
<td>1b-2</td>
<td>1.5</td>
</tr>
<tr>
<td>Double Rim Board - Option 2</td>
<td>1b-3</td>
<td>1.6</td>
</tr>
<tr>
<td>Rim Joist</td>
<td>1c</td>
<td>1.7</td>
</tr>
<tr>
<td>Squash Blocks</td>
<td>1d</td>
<td>1.8</td>
</tr>
<tr>
<td>Squash Blocks under a Post</td>
<td>1e</td>
<td>1.9</td>
</tr>
<tr>
<td>Starter Joist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter Joist - Single I-Joist</td>
<td>1f-1</td>
<td>1.10</td>
</tr>
<tr>
<td>Starter Joist - Double I-Joist</td>
<td>1f-2</td>
<td>1.11</td>
</tr>
<tr>
<td>Starter Joist - I-Joist and Rim Board</td>
<td>1f-3</td>
<td>1.12</td>
</tr>
<tr>
<td>Starter Joist - Rim Board</td>
<td>1f-4</td>
<td>1.13</td>
</tr>
<tr>
<td>Starter Joist - Double Rim Board</td>
<td>1f-5</td>
<td>1.14</td>
</tr>
<tr>
<td>Starter Joist - Knee Wall</td>
<td>1f-6</td>
<td>1.15</td>
</tr>
<tr>
<td>Blocking Panels at Interior Supports</td>
<td>1g</td>
<td>1.16</td>
</tr>
<tr>
<td>Continuous Joists</td>
<td>1g-1</td>
<td>1.17</td>
</tr>
<tr>
<td>Continuous Joists with Blocking Panels</td>
<td>1g-2</td>
<td>1.18</td>
</tr>
<tr>
<td>Non-continuous Joists</td>
<td>1g-3</td>
<td>1.19</td>
</tr>
<tr>
<td>Staggered Non-continuous Joists</td>
<td>1g-4</td>
<td>1.20</td>
</tr>
<tr>
<td>Backer Block</td>
<td>1h</td>
<td>1.24</td>
</tr>
<tr>
<td>Backer Block - Alternative Detail</td>
<td>1h-1</td>
<td>1.25</td>
</tr>
<tr>
<td>Backer Block - Alternative Detail with Additional Nails</td>
<td>1h-2</td>
<td>1.26</td>
</tr>
<tr>
<td>Nordic Lam or SCL Beam - Top- or Face-mount Hangers</td>
<td>1i</td>
<td>1.27</td>
</tr>
<tr>
<td>Nordic Lam or SCL Beam - Long Strap Hangers</td>
<td>1j-1</td>
<td>1.28</td>
</tr>
<tr>
<td>Steel Beam - Top-mount Hangers</td>
<td>1k</td>
<td>1.29</td>
</tr>
<tr>
<td>Steel Beam - Face-mount Hangers</td>
<td>1k-1</td>
<td>1.30</td>
</tr>
<tr>
<td>Steel Beam - Support on a Plate</td>
<td>1k-2</td>
<td>1.31</td>
</tr>
<tr>
<td>Steel Beam - Support on the Bottom Flange</td>
<td>1k-3</td>
<td>1.32</td>
</tr>
<tr>
<td>Steel Beam - Flush</td>
<td>1k-4</td>
<td>1.33</td>
</tr>
<tr>
<td>Framing Anchor to Backer Block</td>
<td>1m</td>
<td>1.34</td>
</tr>
<tr>
<td>Bevel-cut I-Joist</td>
<td>1n</td>
<td>1.35</td>
</tr>
<tr>
<td>Bevel-cut I-Joist for a Fire Wall</td>
<td>1n-1</td>
<td>1.36</td>
</tr>
<tr>
<td>Reinforced Bevel-cut I-Joist</td>
<td>1n-2</td>
<td>1.37</td>
</tr>
<tr>
<td>Double I-Joist - Filler Block</td>
<td>1p</td>
<td>1.38</td>
</tr>
<tr>
<td>Top-loaded Double I-Joist</td>
<td>1p-1</td>
<td>1.39</td>
</tr>
<tr>
<td>Mid-span Blocking Panels</td>
<td>1r-1</td>
<td>1.40</td>
</tr>
<tr>
<td>Mid-span Blocking Panels with Strapping</td>
<td>1r-2</td>
<td>1.41</td>
</tr>
<tr>
<td>Mid-span Blocking Panels with Ceiling</td>
<td>1r-3</td>
<td>1.42</td>
</tr>
<tr>
<td>Double Mid-span Blocking Panels</td>
<td>1r-4</td>
<td>1.43</td>
</tr>
<tr>
<td>Blocking Panels for Starter Joists</td>
<td>1s-1</td>
<td>1.44</td>
</tr>
<tr>
<td>Non-load-bearing Partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-load-bearing Partitions - Sheathing without Blocking</td>
<td>1t-1</td>
<td>1.45</td>
</tr>
<tr>
<td>Non-load-bearing Partitions - Sheathing with Blocking</td>
<td>1t-2</td>
<td>1.46</td>
</tr>
<tr>
<td>Non-load-bearing Partitions - Sheathing with Blocking Panel</td>
<td>1t-3</td>
<td>1.47</td>
</tr>
</tbody>
</table>
LIST OF DETAILS (CONTINUED)

2 Web Stiffeners and Cantilevers

<table>
<thead>
<tr>
<th>Title</th>
<th>Drawing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-joist Web Stiffeners</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Cantilever Details for Balconies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-joist Cantilever Detail for Interior Balconies</td>
<td>3a</td>
<td>2.2</td>
</tr>
<tr>
<td>Lumber Cantilever Detail for Balconies</td>
<td>3b</td>
<td>2.3</td>
</tr>
<tr>
<td>Cantilever Details for Vertical Building Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantilever - No Sheathing Reinforcement</td>
<td>4a</td>
<td>2.4</td>
</tr>
<tr>
<td>Cantilever - Sheathing Reinforcement, One Side</td>
<td>4a-1</td>
<td>2.5</td>
</tr>
<tr>
<td>Cantilever - Sheathing Reinforcement, Two Sides</td>
<td>4a-2</td>
<td>2.6</td>
</tr>
<tr>
<td>Cantilever - Double I-joists</td>
<td>4b</td>
<td>2.7</td>
</tr>
<tr>
<td>Cantilever - Without Blocking (No Wall Load)</td>
<td>4c</td>
<td>2.8</td>
</tr>
<tr>
<td>Short Cantilever Details for Vertical Building Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Cantilever - No Sheathing Reinforcement</td>
<td>5a</td>
<td>2.9</td>
</tr>
<tr>
<td>Short Cantilever - Sheathing Reinforcement, One Side</td>
<td>5a-1</td>
<td>2.10</td>
</tr>
<tr>
<td>Short Cantilever - Sheathing Reinforcement, Two Sides</td>
<td>5a-2</td>
<td>2.11</td>
</tr>
<tr>
<td>Short Cantilever - Double I-joists</td>
<td>5b</td>
<td>2.12</td>
</tr>
<tr>
<td>Short Cantilever - 2x8 Blocking</td>
<td>5c</td>
<td>2.13</td>
</tr>
<tr>
<td>Short Cantilever - Set-back Detail, I-joist</td>
<td>5d-1</td>
<td>2.14</td>
</tr>
<tr>
<td>Short Cantilever - Set-back Detail, Beam</td>
<td>5d-2</td>
<td>2.15</td>
</tr>
<tr>
<td>Short Cantilever - Set-back Detail, Hangers</td>
<td>5d-3</td>
<td>2.16</td>
</tr>
<tr>
<td>Short Cantilever - Corner Detail</td>
<td>5e-1</td>
<td>2.17</td>
</tr>
</tbody>
</table>

3 Openings and Rim Boards

<table>
<thead>
<tr>
<th>Title</th>
<th>Drawing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openings for Horizontal Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Hole Specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-joist Typical Holes</td>
<td>6a</td>
<td>3.1</td>
</tr>
<tr>
<td>Location of Web Holes</td>
<td>6-1</td>
<td>3.2</td>
</tr>
<tr>
<td>Duct Chase Opening Specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-joist Typical Duct Chase Openings</td>
<td>6b</td>
<td>3.3</td>
</tr>
<tr>
<td>Location of Duct Chase Openings</td>
<td>6-2</td>
<td>3.4</td>
</tr>
<tr>
<td>Holes in Lateral-restraint-only Blocking Panels</td>
<td>6c</td>
<td>3.5</td>
</tr>
<tr>
<td>Openings for Vertical Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairwell Openings in I-joist Floors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairwells Parallel to I-joist Span</td>
<td>7a-1</td>
<td>3.6</td>
</tr>
<tr>
<td>Stairwells Perpendicular to I-joist Span</td>
<td>7a-2</td>
<td>3.7</td>
</tr>
<tr>
<td>Floor Openings for Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Openings for Mechanics - Perpendicular to Joists</td>
<td>7b-1</td>
<td>3.8</td>
</tr>
<tr>
<td>Floor Openings for Mechanics - Parallel to Joists</td>
<td>7b-2</td>
<td>3.9</td>
</tr>
<tr>
<td>Allowance for Piping</td>
<td>7c</td>
<td>3.10</td>
</tr>
<tr>
<td>Floor Openings for Piping - Perpendicular to Joists - Option 1</td>
<td>7c-1</td>
<td>3.11</td>
</tr>
<tr>
<td>Floor Openings for Piping - Perpendicular to Joists - Option 2</td>
<td>7c-2</td>
<td>3.12</td>
</tr>
<tr>
<td>Notch in I-joist for Heat Register</td>
<td>7d</td>
<td>3.13</td>
</tr>
<tr>
<td>Details for Rim Boards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rim Board Installation Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachment Details Where Rim Boards Abut</td>
<td>8a</td>
<td>3.14</td>
</tr>
<tr>
<td>Toe-nail Connection at Rim Board</td>
<td>8b</td>
<td>3.15</td>
</tr>
<tr>
<td>2x Ledger to Rim Board Attachment Detail</td>
<td>8c</td>
<td>3.16</td>
</tr>
<tr>
<td>Fastener Spacing for Deck Ledger</td>
<td>8d</td>
<td>3.17</td>
</tr>
<tr>
<td>Framing Details for Decks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decks - Hold-down Device Parallel to I-joists</td>
<td>8e-1</td>
<td>3.18</td>
</tr>
<tr>
<td>Decks - Hold-down Device Perpendicular to I-joists</td>
<td>8e-2</td>
<td>3.19</td>
</tr>
<tr>
<td>Rim Board Hole Specifications</td>
<td>8</td>
<td>3.20</td>
</tr>
<tr>
<td>Rim Board Installed Over an Opening</td>
<td>8f</td>
<td>3.21</td>
</tr>
<tr>
<td>Holes in Rim Boards and Concentrated Loads</td>
<td>8g</td>
<td>3.22</td>
</tr>
<tr>
<td>Multiple Holes in Rim Board</td>
<td>8h</td>
<td>3.23</td>
</tr>
</tbody>
</table>
LIST OF DETAILS (CONTINUED)

4 Sprinkler Pipe Installation

<table>
<thead>
<tr>
<th>Title</th>
<th>Drawing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Pipe Installation for I-joists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling Flange Hanger</td>
<td>9a</td>
<td>4.1</td>
</tr>
<tr>
<td>Joist Clamp Hanger</td>
<td>9b</td>
<td>4.2</td>
</tr>
<tr>
<td>Angle Bracket Hanger</td>
<td>9c</td>
<td>4.3</td>
</tr>
<tr>
<td>NFPA 13 Steel Angle Trapeze with Hanger</td>
<td>9d</td>
<td>4.4</td>
</tr>
<tr>
<td>CPVC Hanger - Double Offset</td>
<td>9e</td>
<td>4.5</td>
</tr>
<tr>
<td>CPVC Hanger - Surface Mount</td>
<td>9f</td>
<td>4.6</td>
</tr>
</tbody>
</table>

5 Typical Roof Framing and Construction Details

<table>
<thead>
<tr>
<th>Title</th>
<th>Drawing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Roof Framing and Construction Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Notes - Roof Systems</td>
<td></td>
<td>5.i</td>
</tr>
<tr>
<td>Typical Roof Framing</td>
<td>10</td>
<td>5.1</td>
</tr>
<tr>
<td>Upper End - Bearing on Wall</td>
<td>10a</td>
<td>5.2</td>
</tr>
<tr>
<td>Peak Connection</td>
<td>10b</td>
<td>5.3</td>
</tr>
<tr>
<td>I-joist to Ridge Beam Connection</td>
<td>10c</td>
<td>5.4</td>
</tr>
<tr>
<td>I-joist Connection with Wood Structural Panel Gussets</td>
<td>10d</td>
<td>5.5</td>
</tr>
<tr>
<td>I-joist Connection with Tie Strap</td>
<td>10e</td>
<td>5.6</td>
</tr>
<tr>
<td>Roof Opening - Top-mount Hangers</td>
<td>10f</td>
<td>5.7</td>
</tr>
<tr>
<td>Roof Opening - Face-mount Hangers</td>
<td>10g</td>
<td>5.8</td>
</tr>
<tr>
<td>Birdsmouth Cut and Bevel Cut Bearing Stiffeners</td>
<td>10h</td>
<td>5.9</td>
</tr>
<tr>
<td>Birdsmouth Cut with Overhang</td>
<td>10i</td>
<td>5.10</td>
</tr>
<tr>
<td>I-joist Overhang for Fascia Support with Birdsmouth Cut</td>
<td>10k</td>
<td>5.11</td>
</tr>
<tr>
<td>blocking Panel at Beveled Plate</td>
<td>10m</td>
<td>5.12</td>
</tr>
<tr>
<td>I-joist with Bevel-cut End</td>
<td>10n</td>
<td>5.13</td>
</tr>
<tr>
<td>Outrigger</td>
<td>10p</td>
<td>5.14</td>
</tr>
<tr>
<td>I-joist Overhang with Beveled Plate</td>
<td>10q</td>
<td>5.15</td>
</tr>
<tr>
<td>Lumber Overhang with Beveled Plate</td>
<td>10r</td>
<td>5.16</td>
</tr>
<tr>
<td>I-joist Overhang for Fascia Support with Birdsmouth Cut</td>
<td>10s</td>
<td>5.17</td>
</tr>
<tr>
<td>I-joist Overhang for Fascia Support with Beveled Plate</td>
<td>10t</td>
<td>5.18</td>
</tr>
<tr>
<td>Birdsmouth Cut</td>
<td>10u</td>
<td>5.19</td>
</tr>
<tr>
<td>Ventilation Holes in Blocking Panels</td>
<td>10v</td>
<td>5.20</td>
</tr>
<tr>
<td>Ventilation Holes in I-joist Web</td>
<td>10w</td>
<td>5.21</td>
</tr>
</tbody>
</table>
NORDIC I-JOISTS

Nordic I-joists are composed of sawn lumber flanges connected by a structural oriented strand board and bonded together with exterior-grade adhesives.

NI-40x
- ** Sizes**: 2x3 1950f MSR, 3/8 in. web
- ** Depths**: 9-1/2, 11-7/8 and 14 in.

NI-60
- ** Sizes**: 2x3 2100f MSR, 3/8 in. web
- ** Depths**: 9-1/2, 11-7/8, 14 and 16 in.

NI-80
- ** Sizes**: 2x4 2100f MSR, 3/8 in. web
- ** Depths**: 9-1/2, 11-7/8, 14 and 16 in.

NI-90
- ** Sizes**: 2x4 2400f MSR, 7/16 in. web
- ** Depths**: 11-7/8, 14 and 16 in.

NI-80x
- ** Sizes**: 2x4 2100f MSR, 7/16 in. web
- ** Depths**: 18, 20, 22 and 24 in.

Check availability of products with your local distributor.
Notes:
2. For APA Rim Board Plus specifications, see ANSI/APA PRR 410, Standard for Performance-rated Engineered Wood Rim Boards.
Notes:
1. Hangers shown illustrate the four most commonly used metal hangers to support I-joists.
2. All nailing must meet the manufacturer's recommendations.
3. Hangers should be selected based on the joist depth, flange width and load capacity.
4. Web stiffeners are required when the sides of the hangers do not laterally brace the top flange of the I-joist.
5. For the selection tables, consult the technical guide NS-GT3. For further information, refer to the manufacturer's literature. Check with your local distributor.

Note:
1. 10d box nails (0.128 x 3 inches) may be substituted for 8d common nails shown in details.
Nailed to Only One Flange Edge (Top View)

Nailed to Both Flange Edges (Top View)

Recommended Closest Nail Spacing for Fastening Sheathing to I-joist Flanges to Minimize Splitting

<table>
<thead>
<tr>
<th>Fastener size (diameter x length)</th>
<th>Flange face nailing $^{(a)}$</th>
<th>Flange edge nailing $^{(b)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End distance (in.)</td>
<td>Nail spacing (in.)</td>
</tr>
<tr>
<td>0.128" or smaller in diameter, and 3-1/4" or shorter in length (8d box or sinker, 10d box or sinker, or 12d box)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Greater than 0.128" up to 0.148" in diameter, and 3-1/4" or shorter in length (8d common, 10d common, 12d sinker or common, or 16d sinker)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

$^{(a)}$ If more than one row is required, offset rows a minimum of 1/2 inch and stagger.

$^{(b)}$ Closest nail spacing measured from one flange edge. Nails on opposite flange edge must be offset one-half the minimum spacing.
TYPICAL FLOOR FRAMING AND CONSTRUCTION DETAILS
Floor Systems

1. Installation of Nordic I-joists shall be as shown in details 1.
2. Except for cutting to length, I-joist flanges should never be cut, drilled or notched.
3. Install I-joists so that top and bottom flanges are within 1/2 inch of true vertical alignment.
4. Concentrated loads should only be applied to the top surface of the top flange. Concentrated loads should not be suspended from the bottom flange with the exception of light loads, such as ceiling fans or light fixtures.
5. I-joists must be protected from the weather prior to installation.
6. I-joists must not be used in applications where they will be permanently exposed to weather, or will reach a moisture content of 16 percent or greater, such as in swimming pool or hot tub areas. They must not be installed where they will remain in direct contact with concrete or masonry.
7. End bearing length must be at least 1-3/4 inch. For multiple-span joists, intermediate bearing length must be at least 3-1/2 inches.
8. Ends of floor joists shall be restrained to prevent rollover. Use rim board or I-joist blocking panels.
9. I-joists installed beneath bearing walls perpendicular to the joists shall have full-depth blocking panels, rim board, or squash blocks (cripple blocks) to transfer gravity loads from above the floor system to the wall or foundation below.
10. For I-joists installed directly beneath bearing walls parallel to the joists or used as rim board or blocking panels, the maximum allowable vertical load using a single I-joist is 2,000 plf, and 4,000 plf if double I-joists are used.
11. Continuous lateral support of the I-joist’s compression flange is required to prevent rotation and buckling. In simple span uses, lateral support of the top flange is normally supplied by the floor sheathing. In multiple-span or cantilever applications, bracing of the I-joist’s bottom flange is also required at interior supports of multiple-span joists, and at the end support next to the cantilever extension. The ends of all cantilever extensions must be laterally braced as shown in details 3, 4, or 5.
12. Nails installed in flange face or edge shall be spaced in accordance with the applicable building code requirements or approved building plans, but should not be closer than those specified on page viii.
13. Details 1 on the following pages show only I-joist-specific fastener requirements. For other fastener requirements, see the applicable building code.
14. For proper temporary bracing of wood I-joists and placement of temporary construction loads, see APA Technical Note: Temporary Construction Loads over I-Joist Roofs and Floors, Form J735.
Holes may be cut in web for plumbing, wiring and duct work. See details and tables 6. Note: Never cut or notch flanges.

Nordic Lam or SCL

Use hangers recognized in current code evaluation reports

Note:
1. Some framing requirements such as erection bracing and blocking panels have been omitted for clarity.
The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

8d nails at 6” o.c. to top plate (when used for lateral shear transfer, nail to bearing plate with same nailing as required for floor sheathing)

Attach I-joist to top plate per detail 1b
The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

Note:
1. To avoid splitting flange, start nails at least 1-1/2 inch from end of I-joist. Nails may be driven at an angle to avoid splitting of bearing plate.
Note:

1. To avoid splitting flange, start nails at least 1-1/2 inch from end of I-joist. Nails may be driven at an angle to avoid splitting of bearing plate.
Rim board
One 8d common or box nail at top and bottom flange, for each rim board (space nails 2"

Attach each rim board to top plate using 8d common or box toe-nails at 6" o.c.

Minimum 1-3/4" bearing required

One 8d face nail at each side at bearing

Note:
1. To avoid splitting flange, start nails at least 1-1/2 inch from end of I-joist. Nails may be driven at an angle to avoid splitting of bearing plate.

-blocking panel and/or rim joist
Uniform vertical load transfer capacity (plf) (a)

| | 2 x 1-1/8" APA Rim Board Plus | 9,700 |

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.
Note:
1. To avoid splitting flange, start nails at least 1-1/2 inch from end of I-joist. Nails may be driven at an angle to avoid splitting of bearing plate.

<table>
<thead>
<tr>
<th>Block panel and/or rim joist</th>
<th>Uniform vertical load transfer capacity (pf) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 1-1/8" APA Rim Board Plus</td>
<td>9,700</td>
</tr>
</tbody>
</table>

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Minimum 1-3/4" bearing required

Attach I-joist per detail 1b

Attach rim joist to floor joist with one nail at top and bottom. Nail must provide 1" minimum penetration into floor joist. Toe-nails may be used.

Attach rim joist to top plate per detail 1a

Nordic rim joist per detail 1a

Uniform vertical load transfer capacity (plf) (a)

<table>
<thead>
<tr>
<th>Blocking panel and/or rim joist</th>
<th>Uniform vertical load transfer capacity (plf) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordic I-joists</td>
<td>2,000</td>
</tr>
</tbody>
</table>

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.

<table>
<thead>
<tr>
<th>Pair of squash blocks (a)</th>
<th>Vertical load transfer capacity (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-1/2” wide</td>
</tr>
<tr>
<td>2x lumber</td>
<td>3,800</td>
</tr>
<tr>
<td>1-1/8” APA Rim Board Plus</td>
<td>2,800</td>
</tr>
</tbody>
</table>

(a) The squash blocks are assumed to be in full bearing on the plate below.
Transfer load from above to bearing below. Install squash blocks per detail 1d. Match bearing area of blocks below to post above. Stagger nails to avoid splitting.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Blocking panels may be required per detail 1s-1

Attach I-joist to top plate using 8d nails at 6" o.c.

Provide backer for siding attachment unless nailable sheathing is used

Wall sheathing, as required

Notes:
1. Rim board may be used in lieu of I-joists. Backer is not required when rim board is used.
2. Notches of up to 3/4 inch in the I-joist bottom flange are permitted for fastening the sill plate to the foundation, with a spacing of 4 feet and more.

<table>
<thead>
<tr>
<th>Blocking panel and/or rim joist</th>
<th>Uniform vertical load transfer capacity (plf) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordic I-joists</td>
<td>2,000</td>
</tr>
</tbody>
</table>

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.
Notes:
1. Rim board may be used in lieu of I-joists. Backer is not required when rim board is used.
2. Notches of up to 3/4 inch in the I-joist bottom flange are permitted for fastening the sill plate to the foundation, with a spacing of 4 feet and more.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

<table>
<thead>
<tr>
<th>Blocking panel and/or rim joist</th>
<th>Uniform vertical load transfer capacity (plf)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Nordic I-joists</td>
<td>4,000</td>
<td></td>
</tr>
</tbody>
</table>

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.
Blocking panels may be required per detail 1s-1

Rim board

One 8d nail at 12" o.c. at top and bottom flange

Attach rim board to top plate using 8d common or box toe-nails at 6" o.c.

8d nails at 6" o.c. to top plate (when used for lateral shear transfer, nail to bearing plate with same nailing as required for decking)

Nordic I-joist

Note:
1. Notches of up to 3/4 inch in the I-joist bottom flange are permitted for fastening the sill plate to the foundation, with a spacing of 4 feet and more.

<table>
<thead>
<tr>
<th>Blocking panel and/or rim joist</th>
<th>Uniform vertical load transfer capacity (plf) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/8" APA Rim Board Plus</td>
<td>4,850</td>
</tr>
<tr>
<td>Nordic I-joists</td>
<td>2,000</td>
</tr>
<tr>
<td>Both products</td>
<td>6,850</td>
</tr>
</tbody>
</table>

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

Blocking panels may be required per detail 1s-1

Rim board, braced with blocking panel at 24" o.c. minimum

Attach rim board to top plate using 8d common or box toe-nails at 6" o.c.

Blocking panel and/or rim joist

Uniform vertical load transfer capacity (plf) (a)

| 1-1/8" APA Rim Board Plus | 4,850 |

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.

<table>
<thead>
<tr>
<th>Blocking panel and/or rim joist</th>
<th>Uniform vertical load transfer capacity (plf) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 1-1/8" APA Rim Board Plus</td>
<td>9,700</td>
</tr>
</tbody>
</table>

(a) The uniform vertical load transfer capacity is limited to a depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-year) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see detail 1d.
Blocking panels may be required per detail 1s-1

2x4 pony wall by others. Attach pony wall to top plate using 16d nails at 6” o.c.
Notes:
1. An occasional blocking panel (one per line of blocking) may be left out for the passage of plumbing or ventilation ducts. For other applications, contact Nordic Structures.
2. For other options, see details 1g-1 to 1g-4.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:

1. This detail only applies to continuous I-joists without load-bearing wall above.
2. In high seismic areas (SDC, D0, D1 and D2), the IRC requires blocking per detail 1g at all intermediate supports. The IBC requires blocking per detail 1g at all supports for all seismic design categories.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Note:
1. An occasional blocking panel (one per line of blocking) may be left out for the passage of plumbing or ventilation ducts. For other applications, contact Nordic Structures.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. An occasional blocking panel (one per line of blocking) may be left out for the passage of plumbing or ventilation ducts. For other applications, contact Nordic Structures.
Notes:
1. An occasional blocking panel (one per line of blocking) may be left out for the passage of plumbing or ventilation ducts. For other applications, contact Nordic Structures.
2. Joist spacing may vary from one side to the other. If the space between the joists is less than 3 inches, the blocking panel may be omitted.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
This page is intentionally left blank.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
This page is intentionally left blank
Use backer block if hanger load exceeds 250 lbf. Before installing a backer block to a double I-joist, drive three additional 10d nails through the webs and filler block where the backer block will fit. Clinch. Install backer block tight to top flange. Use twelve 10d nails, clinched when possible. Maximum capacity for hanger for this detail = 1,280 lbf.

Notes:
1. Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.
2. For hanger capacity, see manufacturer's recommendations.
3. Verify double I-joist capacity to support concentrated loads.
4. Backer blocks must be long enough to permit required nailing without splitting.
5. For other options, see details 1h-1 and 1h-2.

Filler block per detail
- Only on the loaded side for top-mount hangers
- On both sides for face-mount hangers

<table>
<thead>
<tr>
<th>Flange width (in.)</th>
<th>Material thickness required (in.) (^{(a)})</th>
<th>Minimum depth (in.) (^{(b)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1/2</td>
<td>1</td>
<td>5-1/2</td>
</tr>
<tr>
<td>3-1/2</td>
<td>1-1/2</td>
<td>7-1/4</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Minimum grade for backer block material shall be Utility grade S-P-F (south) or better for solid sawn lumber and Rated Sheathing grade for wood structural panels.

\(^{(b)}\) For face-mount hangers use net joist depth minus 3-1/4 inches for joists with 1-1/2-inch-thick flanges.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:

1. Support back of I-joist web during nailing to prevent damage to web/flange connection.
2. Leave a 1/8-inch- to 1/4-inch-gap between top of filler block and bottom of top I-joist flange.
3. For face-mount hangers, use joist depth minus 3-1/4 inches.
4. Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.
5. For hanger resistance, see manufacturer's recommendations.
6. Verify double I-joist resistance to support concentrated load.

Filler block

Backer block

Total quantity

Number of rows

Spacing (in.)

Total quantity

Notes:

1. Minimum grade for backer block and filler block materials shall be No. 2 grade S-P-F or better for solid sawn lumber and Rated Sheathing grade for wood structural panels.
2. Minimum distances: Spacing parallel to grain of 3 inches; end distance parallel to grain of 2 inches; spacing between rows of 1-1/2 inch; and edge distance of 3/4 inch.
3. For filler block, alternate nails on opposite side.
4. Number of rows and spacings may vary, as long as the total quantity of nails and the minimum distances are respected.

Table:

<table>
<thead>
<tr>
<th>Joist depth (in.)</th>
<th>Filler block</th>
<th>Backer block</th>
<th>Allowable load (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10d nails on 4'-0", on both sides</td>
<td>10d nails on 2'-0", on one side</td>
<td></td>
</tr>
<tr>
<td>Number of rows</td>
<td>Spacing (in.)</td>
<td>Total quantity</td>
<td>Number of rows</td>
</tr>
<tr>
<td>9-1/2</td>
<td>2</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>11-7/8</td>
<td>2</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>12</td>
<td>32</td>
</tr>
</tbody>
</table>

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

Notes:
1. Support back of I-joist web during nailing to prevent damage to web/flange connection.
2. Leave a 1/8-inch- to 1/4-inch-gap between top of filler block and bottom of top I-joist flange.
3. For face-mount hangers, use joist depth minus 3-1/4 inches.
4. Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.
5. For hanger resistance, see manufacturer's recommendations.
6. Verify double I-joist resistance to support concentrated load.

Typical Floor Framing and Construction Details

NORDIC JOIST

Notes:
1. Minimum grade for backer block and filler block materials shall be No. 2 grade S-P-F or better for solid sawn lumber and Rated Sheathing grade for wood structural panels.
2. Minimum distances: Spacing parallel to grain of 3 inches; end distance parallel to grain of 2 inches; spacing between rows of 1-1/2 inch; and edge distance of 3/4 inch.
3. For filler block, alternate nails on opposite side.
4. Number of rows and spacings may vary, as long as the total quantity of nails and the minimum distances are respected.
Notes:
1. Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.
2. For nailing schedules for multiple Nordic Lam or SCL beams, see the manufacturer's recommendations.
Note:
1. For nailing schedules for multiple beams, see the manufacturer's recommendations.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Note:

1. Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.

Note:
1. Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.

Note:
1. End of floor joists shall be restrained using blocking panels installed at a maximum of 6 inches from end of I-joists. Attach with one 8d toe-nail on each side of top and bottom flanges.
Note:
1. End of floor joists shall be restrained using blocking panels installed at a maximum of 6 inches from end of I-joists. Attach with one 8d toe-nail on each side of top and bottom flanges.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Fasten sheathing to the steel beam with appropriate fasteners.

Do not cut the I-joist top flange beyond 1/4" of steel beam.

Continuous 1x4 strapping attached with two 6d nails to each joist, and fastened at each end to a sill or header.

Minimum 1-3/4" bearing. The joists shall be properly fastened to the steel beam.

Notes:
1. End of floor joists shall be restrained using blocking panels installed at a maximum of 6 inches from end of I-joists. Attach with one 8d toe-nail on each side of top and bottom flanges.
2. Filler may be required on top of the steel beam.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Multiple I-joist header with full depth filler block shown. Nordic Lam or SCL headers may also be used. Verify header capacity to support concentrated loads.

Filler block per detail 1p

Backer block per detail 1h

Install hanger per manufacturer's recommendations

Note:
1. See detail 1h for maximum support capacity.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Note:
1. Blocking required at bearing for lateral support, not shown for clarity.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. End of floor joists shall be restrained using blocking panels installed at a maximum of 6 inches from end of I-joists. Attach with one 8d toe-nail on each side of top and bottom flanges.
Notes:
1. Blocking required at bearing for lateral support, not shown for clarity.
2. This detail applies to roofs with a slope of 6:12 or greater. For a roof slope less than 6:12, contact your local distributor.
3. This detail is intended to reinforce the I-joist end and not to transfer thrust loads at the rafter heel. The applicability of this detail is based on the joist reaction at the support.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Support back of I-joist web during nailing to prevent damage to web/flange connection.
2. Leave a 1/8-inch to 1/4-inch gap between top of filler block and bottom of top I-joist flange.
3. Filler block is required between joists for full length of span.
4. For flange width of 2-1/2 inches, nail joists together with two rows of 10d nails at 12 inches o.c. (clinched when possible) on each side of the double I-joist (total of four nails per foot). For flange width of 3-1/2 inches, use two rows of 10d nails at 6 inches o.c. on each side of the double I-joist (total of eight nails per foot).
5. The maximum load that may be applied to one side of the double I-joist using this detail is 620 lbf/ft.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

<table>
<thead>
<tr>
<th>Flange width (in.)</th>
<th>Net depth (in.)</th>
<th>Filler block size (in.)</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2</td>
<td>2-1/8 to 2-1/4 x 6</td>
<td>2x6 + 5/8" or 3/4" sheathing</td>
<td></td>
</tr>
<tr>
<td>11-7/8</td>
<td>2-1/8 to 2-1/4 x 8</td>
<td>2x8 + 5/8" or 3/4" sheathing</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2-1/8 to 2-1/4 x 10</td>
<td>2x10 + 5/8" or 3/4" sheathing</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2-1/8 to 2-1/4 x 12</td>
<td>2x12 + 5/8" or 3/4" sheathing</td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>3 x 6</td>
<td>2 x 2x6</td>
<td></td>
</tr>
<tr>
<td>11-7/8</td>
<td>3 x 8</td>
<td>2 x 2x8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3 x 10</td>
<td>2 x 2x10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3 x 12</td>
<td>2 x 2x12</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The height of the filler block may be different from that specified in the table, as long as it allows nailing and respects the required gap.
Notes:
1. This detail only applies to double I-joists uniformly loaded on top and equally on both joists, and when
 the top flanges of both I-joists are continuously laterally supported by connection to the sheathing.
 For other conditions, such as side-loaded I-joists, refer to detail 1p.
2. Attach floor sheathing to each joist. No filler block is required.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. This detail may be used to reduce floor vibration.
2. Blocking panels may be of any I-joist series. Box nails attaching lumber piece to I-joist web should be driven from the web side and clinched on the lumber side.
3. One occasional blocking panel may be left out for the passage of ventilation ducts. Otherwise, a hole of not more than 2/3 of the lesser dimension of the blocking depth or length may be drilled in the blocking panel.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. This detail may be used to reduce floor vibration.
2. Blocking panels may be of any I-joist series. Box nails attaching lumber piece to I-joist web should be driven from the web side and clinched on the lumber side.
3. One occasional blocking panel may be left out for the passage of ventilation ducts. Otherwise, a hole of not more than 2/3 of the lesser dimension of the blocking’s depth or length may be drilled in the blocking panel.
4. For better performance, glue strapping to blocking panels and I-joists with construction adhesive.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. This detail may be used to reduce floor vibration.
2. Blocking panels may be of any I-joist series. Box nails attaching lumber piece to I-joist web should be driven from the web side and clinched on the lumber side.
3. One occasional blocking panel may be left out for the passage of ventilation ducts. Otherwise, a hole of not more than 2/3 of the lesser dimension of the blocking’s depth or length may be drilled in the blocking panel.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. This detail may be used to reduce floor vibration. Blocking panels must be installed at joist mid-span.
2. Blocking panels may be of any I-joist series. Box nails attaching lumber piece to I-joist web should be driven from the web side and clinched on the lumber side.
3. For better performance, glue strappings to blocking panels and I-joists with construction adhesive.
4. A gypsum ceiling directly attached to I-joists can replace strappings.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. In some local codes, blocking panels are prescriptively required in the first joist space (or first and second joist spaces) next to the starter joist. Where required, see local code requirements for spacing of the blocking panels. As a minimum, it is recommended to use blocking panels spaced at 4 feet on center.
2. Details shown are for minimum blocking attachment. Transfer of lateral loads may require additional fasteners. In such cases, nail size, spacing and specific design detailing shall be provided by the building designer.
3. Common nails of the same pennyweight may be substituted for the box nails shown above.
4. Where blocking panels are required between adjacent joists, the blocking panels may be staggered by approximately 3 inches, and end-nailed as shown.
5. Box nails attaching lumber piece to I-joist web should be driven from the web side and clinched on the lumber side.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Non-load-bearing partitions may be parallel or perpendicular to joists and positioned anywhere on the structural panel floor. Check the validity of this detail with the applicable building code.
2. The effect of the additional load on joist spans must be checked. Unless joists are already over-designed, additional joists may be required.
3. The sheathing panel shall be oriented so that its strength axis runs perpendicular to the joists.
4. For best performance, glue the bottom plate to wood structural panel with construction adhesive.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Non-load-bearing partitions may be parallel or perpendicular to joists and positioned anywhere on the structural panel floor.
2. The effect of the additional load on joist spans must be checked. Unless joists are already over-designed, additional joists may be required.
3. The sheathing panel shall be oriented so that its strength axis runs perpendicular to the joists.
4. For best performance, glue the bottom plate to wood structural panel with construction adhesive.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Non-load-bearing partitions may be parallel or perpendicular to joists and positioned anywhere on the structural panel floor.
2. The effect of the additional load on joist spans must be checked. Unless joists are already over-designed, additional joists may be required.
3. Blocking panels may be of any I-joist series. Nails attaching lumber piece to I-joist web should be driven from the web side and clinched on the lumber side.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
WEB STIFFENERS AND CANTILEVERS
Flange width (in.) Web stiffener size each side of web (in.)

<table>
<thead>
<tr>
<th>Flange width (in.)</th>
<th>Web stiffener size each side of web (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1/2</td>
<td>1 x 2-5/16 Minimum width</td>
</tr>
<tr>
<td>3-1/2</td>
<td>1-1/2 x 2-5/16 Minimum width</td>
</tr>
</tbody>
</table>

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Cantilever extension supporting uniform floor loads only

Attach I-joists to plate at all supports per detail 1b

Nordic I-joist or rim board

Rim board or wood structural panel

3-1/2" minimum bearing required

L/4, 4'-0" maximum where L is joist span

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Cantilever extension supporting uniform floor loads only

2x8 minimum. Nail to backer block and joist with two rows of 10d nails at 6" o.c. and clinch. (Cantilever nails may be used to attach backer block if length of nail is sufficient to allow clinching.)

Full-depth backer block with 1/8" gap between block and top flange of I-joist. See detail 1h. Nail with two rows of 10d nails at 6" o.c. and clinch.

Lumber or wood structural panel closure

3-1/2" minimum bearing required

Nordic I-joist or rim board

Attach I-joists to plate at all supports per detail 1b

Notes:
1. The balcony shall be constructed in accordance with 2018 IBC Sections 2304.12.2.5 and 2304.12.2.6
2. Impervious moisture barrier systems, if required, shall be detailed, installed, and inspected in accordance with 2018 IBC Sections 107.2.5 and 110.3.6

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Cantilevered joists must be properly sized to support all design loads. Refer to table 4.1 of the Nordic Joist Technical Guide (NS-GT3).
2. Blocking is required along the cantilever support.
3. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. APA Rated Sheathing 48/24 or APA Rated Sturd-I-floor 24 oc (minimum 23/32 Performance Category) required on one side of joist. Depth shall match the full height of the joist. Nail with 8d nails at 6 inches o.c., top and bottom flange. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b.
2. Cantilevered joists must be properly sized to support all design loads. Refer to table 4.1 of the Nordic Joist Technical Guide (NS-GT3).
3. Blocking is required along the cantilever support.
4. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. APA Rated Sheathing 48/24 or APA Rated Sturd-I-floor 24 oc (minimum 23/32 Performance Category) required on both sides of joist. Depth shall match the full height of the joist. Nail with 8d nails at 6 inches o.c., top and bottom flange, offset on opposite side. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b.
2. Cantilevered joists must be properly sized to support all design loads. Refer to table 4.1 of the Nordic Joist Technical Guide (NS-GT3).
3. Blocking is required along the cantilever support.
4. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Cantilevered joists must be properly sized to support all design loads. Refer to table 4.1 of the Nordic Joist Technical Guide (NS-GT3).
2. Blocking is required along the cantilever support.
3. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. The above detail is applicable only to single family residential construction, and when the cantilever is loaded by uniform floor loads only (i.e. wall is not load-bearing).
2. Cantilevered joists must be properly sized to support design loads. Refer to table 4.1 of the Nordic Joist Technical Guide (NS-GT3).
3. Blocking over bearing wall must be provided at all areas of wall bracing (at end of walls and at least every 25'-0" of wall length). See IRC Table R602.10.1 Wall Bracing.
4. This detail is adequate for I-joist lateral stability. Additional lateral resistance may be required in high wind and/or seismic load areas. In such cases, specific design detailing shall be provided by the building designer.
5. During erection, provide temporary blocking over bearing wall in order to prevent rollover of floor joists.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Cantilevered joists must be properly sized to support all design loads. Refer to table 5.1 of the Nordic Joist Technical Guide (NS-GT3).
2. Blocking is required along the cantilever support.
3. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
5a-1

Notes:
1. APA Rated Sheathing 48/24 or APA Rated Sturd-I-floor 24 oc (minimum 23/32 Performance Category) required on one side of joist. Depth shall match the full height of the joist. Nail with 8d nails at 6 inches o.c., top and bottom flange. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b.
2. Cantilevered joists must be properly sized to support all design loads. Refer to table 5.1 of the Nordic Joist Technical Guide (NS-GT3).
3. Blocking is required along the cantilever support.
4. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. APA Rated Sheathing 48/24 or APA Rated Sturd-I-floor 24 oc (minimum 23/32 Performance Category) required on both sides of joist. Depth shall match the full height of the joist. Nail with 8d nails at 6 inches o.c., top and bottom flanges, offset on opposite side. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b.
2. Cantilevered joists must be properly sized to support all design loads. Refer to table 5.1 of the Nordic Joist Technical Guide (NS-GT3).
3. Blocking is required along the cantilever support.
4. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Cantilevered joists must be properly sized to support all design loads. Refer to table 5.1 of the Nordic Joist Technical Guide (NS-GT3).
2. Blocking is required along the cantilever support.
3. Refer to detail 6c for holes in lateral-restraint-only blocking panels.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.

Notes:
1. The above detail is appropriate for one- and two-family residential structures constructed in accordance with the 2018 International Residential Code Sections R301.2.2.6 and R602.10, and Table R602.3(1).
2. Cantilevered joists must be properly sized and spaced, and may require reinforcements to support vertical wall loads. Note that this detail can only be used when no I-joist reinforcement is required.
Notes:
1. Verify girder joist capacity if the back span exceeds the joist spacing. Limit the differential deflection between adjacent I-joists.
2. Cantilevered joists must be properly sized to support all design loads.
3. Blocking is required along the cantilever support.
4. Maximum capacity for pair of 2x6 blocks for this detail is 370 lbf (total of four nails). For higher capacities, use hangers in lieu of solid sawn blocks.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Verify girder joist capacity if the back span exceeds the joist spacing. Limit the differential deflection between adjacent I-joists.
2. Cantilevered joists must be properly sized to support all design loads.
3. Blocking is required along the cantilever support.
4. Maximum capacity for pair of 2x4 blocks for this detail is 370 lbf (total of four nails). For higher capacities, use hangers in lieu of solid sawn blocks.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:

1. Verify girder joist capacity if the back span exceeds the joist spacing. Limit the differential deflection between adjacent I-joists.
2. Cantilevered joists must be properly sized to support all design loads.
3. Blocking is required along the cantilever support.
4. For hanger capacity, see manufacturer's recommendations.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Full-length rim board (minimum 8'), attach using one 8d nail at top and bottom flange

Install first I-joist over wall

Short cantilever detail for vertical building offset (note 3)

Girder joist or beam; for double joist, use filler block per detail 1p

Attach end of joist according to detail 5d-1, 5d-2 or 5d-3

Notes:
1. This detail is limited to a 5-1/2-inch brick cantilever on two adjacent sides of the building. Use in conjunction with the short cantilever details for vertical building offset.
2. Verify girder joist capacity if the back span exceeds the joist spacing. Limit the differential deflection between adjacent I-joists.
3. Cantilevered joists must be properly sized to support all design loads.
4. Blocking is required along the cantilever support.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Web Hole Specifications

One of the benefits of using I-joists in residential floor construction is that holes may be cut in the joist webs to accommodate electrical wiring, plumbing lines and other mechanical systems, therefore minimizing the depth of the floor system.

Rules for Cutting Holes in I-joists

1. The distance between the inside edge of the support and the centerline of any hole shall be in compliance with the requirements of table 6.1.

2. I-joist top and bottom flanges must never be cut, notched or otherwise modified.

3. Whenever possible, field-cut holes should be centered on the middle of the web.

4. The maximum size hole that can be cut into an I-joist web shall equal the clear distance between the flanges of the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained between the top or bottom of the hole and the adjacent I-joist flange.

5. The sides of square holes or longest sides of rectangular holes should not exceed 3/4 of the diameter of the maximum round hole permitted at that location.

6. Where more than one hole is necessary, the distance between adjacent hole edges shall exceed twice the diameter of the largest round hole or twice the size of the largest square hole - or twice the length of the longest side of the longest rectangular hole — and each hole must be sized and located in compliance with the requirements of table 6.1.

7. Holes measuring 1-1/2 inch or smaller shall be permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to verification.

8. A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it meets the requirements of rule number 6 above. For more than three holes per span, space holes at minimum 15 inches on center or contact Nordic Structures.

9. All holes shall be cut in accordance with the restrictions listed above and as illustrated in detail 6a.

10. Limit three maximum-size holes per span.

11. A group of round holes at approximately the same location shall be permitted if it meets the requirements for a single round hole circumscribed around them.

Notes:

1. Never drill, cut or notch the flange, or over-cut the web.

2. Holes in web should be cut with a sharp saw.

3. For rectangular holes, avoid over-cutting the corners, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch-diameter hole in each of the four corners and then making the cuts between the holes is another good method to minimize damage to the I-joist.
Table 6.1 – Location of Web Holes

Design Criteria

Span: Simple or multiple
Joist spacing: Up to 24 inches
Loads: Live load = 40 psf and dead load = 10 psf
Deflection limits: L/480 under live load and L/240 under total load

Minimum distance from inside face of any support to center of hole (ft-in.)

<table>
<thead>
<tr>
<th>Joist depth</th>
<th>Joist series</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>6-1/4</th>
<th>7</th>
<th>8</th>
<th>8-5/8</th>
<th>9</th>
<th>10</th>
<th>10-3/4</th>
<th>11</th>
<th>12</th>
<th>12-3/4</th>
<th>(L_{ref})</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2"</td>
<td>NI-40x</td>
<td>0'-7"</td>
<td>1'-4"</td>
<td>2'-8"</td>
<td>4'-2"</td>
<td>5'-8"</td>
<td>6'-2"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15'-0"</td>
</tr>
<tr>
<td>11-7/8"</td>
<td>NI-40x</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>1'-0"</td>
<td>2'-4"</td>
<td>3'-8"</td>
<td>4'-0"</td>
<td>5'-2"</td>
<td>6'-8"</td>
<td>8'-0"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17'-2"</td>
</tr>
<tr>
<td>14"</td>
<td>NI-40x</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>0'-9"</td>
<td>2'-0"</td>
<td>2'-4"</td>
<td>3'-4"</td>
<td>4'-9"</td>
<td>5'-9"</td>
<td>6'-3"</td>
<td>8'-0"</td>
<td>9'-9"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18'-11"</td>
</tr>
<tr>
<td></td>
<td>NI-60</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>1'-3"</td>
<td>2'-6"</td>
<td>4'-0"</td>
<td>4'-3"</td>
<td>5'-3"</td>
<td>6'-9"</td>
<td>7'-9"</td>
<td>8'-3"</td>
<td>10'-2"</td>
<td>11'-0"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20'-8"</td>
</tr>
<tr>
<td></td>
<td>NI-80</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>0'-9"</td>
<td>2'-3"</td>
<td>3'-10"</td>
<td>4'-3"</td>
<td>5'-6"</td>
<td>7'-3"</td>
<td>8'-5"</td>
<td>9'-2"</td>
<td>11'-2"</td>
<td>12'-9"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23'-1"</td>
</tr>
<tr>
<td>16"</td>
<td>NI-60</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>0'-8"</td>
<td>1'-2"</td>
<td>2'-5"</td>
<td>2'-9"</td>
<td>3'-9"</td>
<td>5'-0"</td>
<td>6'-0"</td>
<td>6'-6"</td>
<td>8'-0"</td>
<td>9'-2"</td>
<td>9'-8"</td>
<td>11'-9"</td>
<td>13'-9"</td>
<td>22'-10"</td>
</tr>
<tr>
<td></td>
<td>NI-80</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>1'-2"</td>
<td>2'-4"</td>
<td>3'-8"</td>
<td>5'-0"</td>
<td>5'-4"</td>
<td>6'-4"</td>
<td>7'-10"</td>
<td>8'-9"</td>
<td>9'-4"</td>
<td>11'-0"</td>
<td>12'-2"</td>
<td>12'-6"</td>
<td>14'-4"</td>
<td>16'-0"</td>
</tr>
<tr>
<td></td>
<td>NI-90</td>
<td>0'-7"</td>
<td>0'-8"</td>
<td>0'-8"</td>
<td>1'-6"</td>
<td>3'-0"</td>
<td>3'-5"</td>
<td>4'-6"</td>
<td>6'-3"</td>
<td>7'-3"</td>
<td>7'-10"</td>
<td>9'-8"</td>
<td>11'-0"</td>
<td>11'-6"</td>
<td>13'-6"</td>
<td>15'-3"</td>
<td>25'-7"</td>
</tr>
</tbody>
</table>

Notes:

1. Tabulated values are applicable to residential floor construction meeting the above design criteria.
2. If the actual measured span is less than the reference span, \(L_{ref} \), the minimum distance from inside face of any support to center of hole may be reduced as follows:

\[
D_{\text{reduced}} = (L_{\text{actual}} / L_{\text{ref}}) \times D
\]

Where:

- \(D_{\text{reduced}} \) = Reduced distance from inside face of any support to center of hole (ft). The reduced distance shall not be less than 6 inches from the face of the support to edge of the hole.
- \(L_{\text{actual}} \) = Actual measured span distance between the inside face of supports (ft).
- \(L_{\text{ref}} \) = Reference span given in this table (ft).
- \(D \) = Minimum distance from the inside face of any support to center of hole from this table (ft).
Duct Chase Opening Specifications

One of the benefits of using I-joists in residential floor construction is that openings may be cut in the joist webs to accommodate a duct chase (supply duct for heating, ventilation or air-conditioning), therefore minimizing the depth of the floor system.

Rules for Cutting Duct Chase Openings in I-joists

1. The distance between the inside edge of the support and the centerline of a duct chase opening shall be in compliance with the requirements of table 6.2.
2. I-joist top and bottom flanges must never be cut, notched or otherwise modified.
3. The maximum depth of a duct chase opening that can be cut into an I-joist web shall equal the clear distance between the flanges of the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained between the top or bottom of the opening and the adjacent I-joist flange.
4. All openings shall be cut in accordance with the restrictions listed above and as illustrated in detail 6b.
5. Limit one maximum-size duct chase opening per span.

Notes:
1. Never drill, cut or notch the flange, or over-cut the web.
2. Holes in web should be cut with a sharp saw.
3. Avoid over-cutting the corners, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch-diameter hole in each of the four corners and then making the cuts between the holes is another good method to minimize damage to the I-joist.

<table>
<thead>
<tr>
<th>I-joist depth (in.)</th>
<th>Maximum depth of the opening (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2</td>
<td>6-1/4</td>
</tr>
<tr>
<td>11-7/8</td>
<td>8-5/8</td>
</tr>
<tr>
<td>14</td>
<td>10-3/4</td>
</tr>
<tr>
<td>16</td>
<td>12-3/4</td>
</tr>
</tbody>
</table>
Table 6.2 – Location of Duct Chase Openings

<table>
<thead>
<tr>
<th>Joist depth</th>
<th>Joist series</th>
<th>Duct chase length (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2"</td>
<td>NI-40x</td>
<td>5'-2" 5'-7" 6'-0" 6'-4" 6'-8" 7'-2" 7'-7"</td>
</tr>
<tr>
<td></td>
<td>NI-60</td>
<td>5'-3" 5'-8" 6'-0" 6'-4" 6'-8" 7'-2" 7'-7"</td>
</tr>
<tr>
<td></td>
<td>NI-80</td>
<td>5'-2" 5'-7" 6'-0" 6'-4" 6'-8" 7'-2" 7'-7"</td>
</tr>
<tr>
<td>11-7/8"</td>
<td>NI-40x</td>
<td>6'-7" 7'-1" 7'-6" 8'-1" 8'-6" 9'-1" 9'-7"</td>
</tr>
<tr>
<td></td>
<td>NI-60</td>
<td>7'-1" 7'-7" 8'-0" 8'-4" 8'-10" 9'-3" 9'-9"</td>
</tr>
<tr>
<td></td>
<td>NI-80</td>
<td>7'-1" 7'-5" 8'-0" 8'-4" 8'-10" 9'-2" 9'-8"</td>
</tr>
<tr>
<td></td>
<td>NI-90</td>
<td>4'-3" 4'-10" 5'-4" 5'-11" 6'-6" 7'-1" 7'-8"</td>
</tr>
<tr>
<td>14"</td>
<td>NI-40x</td>
<td>7'-9" 8'-3" 8'-10" 9'-5" 10'-1" 10'-7" 11'-3"</td>
</tr>
<tr>
<td></td>
<td>NI-60</td>
<td>8'-8" 9'-2" 9'-6" 10'-1" 10'-6" 11'-1" 11'-7"</td>
</tr>
<tr>
<td></td>
<td>NI-80</td>
<td>8'-9" 9'-2" 9'-8" 10'-1" 10'-6" 11'-1" 11'-6"</td>
</tr>
<tr>
<td></td>
<td>NI-90</td>
<td>5'-10" 6'-5" 7'-0" 7'-6" 8'-2" 8'-9" 9'-4"</td>
</tr>
<tr>
<td>16"</td>
<td>NI-60</td>
<td>10'-1" 10'-7" 11'-0" 11'-6" 12'-1" 12'-7" 13'-4"</td>
</tr>
<tr>
<td></td>
<td>NI-80</td>
<td>10'-3" 10'-9" 11'-2" 11'-7" 12'-1" 12'-7" 13'-2"</td>
</tr>
<tr>
<td></td>
<td>NI-90</td>
<td>7'-4" 7'-11" 8'-6" 9'-1" 9'-8" 10'-3" 13'-0"</td>
</tr>
</tbody>
</table>

Note:
1. Tabulated values are applicable to residential floor construction meeting the above design criteria.
Holes in Lateral-restraint-only Blocking Panels

This detail concerns the placement of holes in the web of I-joists or rim board used as blocking for lateral restraint of floor and roof joists. Blocking for lateral restraint are those members used between floor joists, ceiling joists or rafters to prevent them from rolling over. As a rule of thumb, any blocking that is not supporting a load-bearing wall (vertical or lateral load) or part of an engineered diaphragm perimeter load path can be considered a lateral-restraint-only blocking panel.

Maximum Allowable Hole Size

1. The maximum allowable hole size for a lateral-restraint-only blocking panel is 2/3 of the lesser dimension of the blocking's depth or length. Assuming the blocking panel is longer than its height (or depth), the table aside applies. For other applications, contact Nordic Structures.

2. Holes cut into the blocking panels are subject to the following limitations:

 - The top and bottom flanges of an I-joist blocking panel must never be cut, notched or otherwise modified.
 - Field-cut holes must be centered in the blocking horizontally.
 - While round holes are preferred, rectangle holes may be used provided the corners are not over cut. Slightly rounding corners or pre-drilling corners with a 1-inch-diameter bit is recommended.
 - All holes must be cut in a workman-like manner in accordance with the limitations listed above.

<table>
<thead>
<tr>
<th>I-joist or rim board blocking depth (in.)</th>
<th>Maximum allowable hole diameter (in.)<sup>(a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2</td>
<td>6-1/4</td>
</tr>
<tr>
<td>11-7/8</td>
<td>7-3/4</td>
</tr>
<tr>
<td>14</td>
<td>9-1/4</td>
</tr>
<tr>
<td>16</td>
<td>10-1/2</td>
</tr>
</tbody>
</table>

^{(a) Maximum allowable hole diameter in blocking panel, where the blocking panel is longer than its height.}
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. The above detail represents a basement window framing. Verify rim board capacity to support loads. If needed, use multiple pieces or a Nordic Lam or SCL beam.
2. Verify double I-joist capacity to support concentrated loads.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. The above detail represents a basement window framing. Verify rim board capacity to support loads. If needed, use multiple pieces or a Nordic Lam or SCL beam.
2. Verify double I-joist capacity to support concentrated loads.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. To prevent interference with plumbing, a joist may be shifted up to 3 inches if the edge of the floor panel is supported and the span rating is not exceeded.
2. In all other cases, an additional joist is required.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. Verify trimmers capacity to support concentrated loads.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Verify trimmers capacity to support concentrated loads.
2. Verify headers capacity to support loads. If required, use a Nordic Lam or SCL beam.
Notes:

1. Blocking required at bearing for lateral support, not shown for clarity.
2. The maximum dimensions for a notch on the side of the top flange are 4-inch length by 1/2-inch depth for flange width of 2-1/2 inches, and 4-inch length by 1-inch depth for flange width of 3-1/2 inches.
3. This detail applies to simple-span joists and multiple-span joists where the notch is located at the end half-span.
4. For other applications, contact Nordic Structures.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Floor sheathing to rim board - Use 8d nails (box or common) at 6 inches o.c. Caution: The horizontal load capacity is not necessarily increased with a decreased nail spacing. Under no circumstances should the nail spacing be less than 3 inches. The 16d nails (box or common) used to connect the bottom plate of a wall to the rim board through the sheathing do not reduce the horizontal load capacity of the rim board provided that the 8d nail spacing (sheathing-rim board) is 6 inches o.c. and the 16d nail spacing (bottom plate-sheathing-rim board) is in accordance with the prescriptive requirements of the applicable code. APA recommends a minimum 3/8-inch panel edge distance be maintained when nailing. Calculations show that the tongue does not need to be removed for floor sheathing 7/8-inch thick or less when used in conjunction with rim boards of 1-1/8 inch. Some local code jurisdictions, however, may require removal of the tongue at the edge of floor framing when nailing it to rim board.
2. Rim board to I-joist - Use two 8d nails (box or common), one each into the top and bottom flanges.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Note:
1. Rim board to sill plate - Toe-nail using 8d nails (box or common) at 6 inches o.c.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:

1. Attachment of 2x lumber ledgers to rim board - Use 1/2-inch-diameter lag screws (minimum nominal length of 4 inches) or 1/2-inch-diameter through-bolts with washers and nuts. In both cases, use a design value of 350 lbf per fastener (see detail 8d). **Caution:** The lag screw should be inserted in a lead hole by turning with a wrench, not by driving with a hammer. Over-torquing can significantly reduce the lateral capacity of the lag screw and should therefore be avoided. See the National Design Specification (NDS) for Wood Construction published by the American Forest & Paper Association for the appropriate size of clearance and lead holes.

2. Decks shall be positively anchored to the primary structure. The lateral connection required shall be permitted to be in accordance with detail 8e-1 or 8e-2, as appropriate.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. See notes in detail 8c.
2. Lateral resistance of nails applied to the faces of rim board – Calculate the lateral nail resistance based on the procedures given in the NDS, using the dowel bearing strength equivalent to Douglas-fir-Larch.

Typical spacing (see the table on the right)

Lag screws or thru-bolts with washer

2" typical

Stagger fasteners in 2 rows

2" typical

Fastener Spacing for Deck Ledger and Rim Boards using 1/2-inch-diameter Lag Screws or Thru-bolts with 15/32-inch Maximum Sheathing

Deck live load of 40 psf, deck dead load of 10 psf

<table>
<thead>
<tr>
<th>Joist span (L)</th>
<th>10' < L ≤ 12'</th>
<th>12' < L ≤ 14'</th>
<th>14' < L ≤ 16'</th>
<th>16' < L ≤ 18'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim boards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/8" or thicker</td>
<td>14"</td>
<td>12"</td>
<td>10"</td>
<td>9"</td>
</tr>
<tr>
<td>On-center spacing of fasteners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) See detail 8c for attachment details. Ledger shall be S-P-F or other wood species with a specific gravity of 0.42 or greater.
(b) Lag screws and thru-bolts shall be staggered in accordance with the detail on the left.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Decks shall be positively anchored to the primary structure, as per 2018 IRC Section R507.1.
2. Hold-down tension devices shall be provided in not less than two locations within two feet of the edge of the deck, and shall have an allowable stress design capacity of not less than 1,500 lbf, as per 2018 IRC Section R507.2.4.
3. For more details, refer to the AWC Prescriptive Residential Wood Deck Construction Guide.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Decks shall be positively anchored to the primary structure, as per 2018 IRC Section R507.1.
2. Hold-down tension devices shall be provided in not less than two locations within two feet of the edge of the deck, and shall have an allowable stress design capacity of not less than 1,500 lbf, as per 2018 IRC Section R507.2.4.
3. For more details, refer to the AWC Prescriptive Residential Wood Deck Construction Guide.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Rim Board Hole Specifications

The maximum allowable hole size for a rim board shall be 2/3 of the rim board depth, as shown in the table aside. The length of the rim board segment containing a hole shall be at least eight times the hole size.

Application Notes

1. Do not cut holes in rim board installed over openings, such as doors or windows, where the rim board is not fully supported, except that holes of 1-1/2 inch or less in size are permitted provided they are positioned at the mid-depth and in the middle one-third of the span (see note 5 for minimum hole spacing).

2. Field-cut holes should be vertically centered in the rim board and at least one hole diameter or 6 inches, whichever is less, clear distance away from the end of the wall line. Holes should never be placed such that they interfere with the attachment of the rim board to the ends of the floor joist, or any other code-required nailing.

3. While round holes are preferred, rectangle holes may be used providing the corners are not over-cut. Slightly rounding corners by pre-drilling with a 1-inch-diameter bit is recommended.

4. When concentrated loads are present on the rim board (loads not supported by any other vertical-load-carrying members such as squash blocks), holes should not be placed in the rim board within a distance equal to the depth of the rim board from the area of loading.

5. For multiple holes, the clear spacing between holes shall be at least two times the diameter of the larger hole, or twice the length of the longest side of the longest rectangular hole. This minimum hole spacing does not apply to holes of 1-1/2 inch or less in diameter, which can be placed anywhere in the rim board (see note 1 for holes over opening) except that the clear distance to the adjacent hole shall be 3 inches minimum.

6. All holes shall be cut in accordance with the limitations listed above. See the information for cutting holes under details 6a and 6b.

Rim Board Hole Sizes and Minimum Lengths (a)

<table>
<thead>
<tr>
<th>Rim board depth (in.)</th>
<th>Maximum allowable hole size (in.) (b)</th>
<th>Minimum length of rim board segment for the maximum allowable hole size (in.) (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2</td>
<td>6-1/4</td>
<td>50</td>
</tr>
<tr>
<td>11-7/8</td>
<td>7-3/4</td>
<td>62</td>
</tr>
<tr>
<td>14</td>
<td>9-1/4</td>
<td>74</td>
</tr>
<tr>
<td>16</td>
<td>10-1/2</td>
<td>84</td>
</tr>
</tbody>
</table>

(a) These hole provisions do not apply to rim board installed over openings, such as doors or windows.
(b) The diameter of a round hole or the longer dimension of a rectangular hole.
(c) The length of rim board segment per wall line. For multiple holes, the minimum length of rim board segment shall be eight times the sum of all hole sizes.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Note:
1. Do not cut holes in rim board over opening except for holes of 1-1/2" or less in size (see application note 1).

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

Holes in Rim Boards and Concentrated Loads

Details for Rim Boards

SCALE

- **DATE**
 2022-05-01

PAGE

3.22
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Ceiling flange, minimum 2 screws

Install per NFPA 13 and manufacturer's instructions. Steel sprinkler system pipe 4" maximum diameter or 500 lb maximum point load.

1/2" maximum, fastener centerline from web face

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Joist clamp hanger per manufacturer's specifications (dimension and capacity)

Install per NFPA 13 and manufacturer's instructions.

Steel sprinkler system pipe 4" maximum diameter or 500 lb maximum point load.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
S-P-F No. 2 or better backer block bearing on flange required when supporting steel pipe. 2x4, minimum 6" long, horizontal or vertical.

Install per NFPA 13 and manufacturer's instructions. Steel sprinkler system pipe 4" maximum diameter or 500 lb maximum point load.

Two sheet metal screws #10 x 1-1/2"
Option: Two clinched 8d nails

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

Option 1
Install per NFPA 13. CPVC sprinkler system pipe 2-1/2" maximum diameter = 290 lb maximum point load (145 lb per joist)

Option 2
Install per NFPA 13. Steel sprinkler system pipe 4" maximum diameter = 500 lb maximum point load (250 lb per joist)

Install 48" maximum length NFPA 13 angle iron

Centering hanger location not required

S-P-F No. 2 or better backer block. 2x4, minimum 12" long, horizontal. Attach with two #14 x 2" sheet metal screws.

3/4" maximum, centerline from web face
One 1/4" x 3" lag screw
Option: One #14 x 3" sheet metal screw

S-P-F No. 2 or better backer block. 2x4, minimum 12" long, horizontal. Two #14 x 3" sheet metal screws
Install per NFPA 13 and manufacturer's instructions. CPVC sprinkler system pipe 3" maximum diameter or 310 lb maximum point load.

S-P-F No. 2 or better backer block bearing on flange (optional). 2x4, minimum 6" long, horizontal or vertical.

Four sheet metal screws #10 x 1-1/2"
Option: Four clinched 8d nails

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.

Sheet metal screws
#10 x 1-1/2"
Option: Four clinched
8d nails

Install per NFPA 13 and manufacturer's instructions.
CPVC sprinkler system pipe 3" maximum diameter or 310 lb maximum point load.

S-P-F No. 2 or better backer block bearing on flange (optional). 2x4, minimum 6" long, horizontal or vertical.
Roof Systems

1. Installation of Nordic I-joists shall be as shown in details 10.

2. Except for cutting to length, or for providing birdsmouth bearings, I-joist flanges should never be cut, drilled, or notched.

3. I-joists are permitted to be birdsmouth cut at the lower end of the joist only. The birdsmouth cut must have full bearing and not overhang the inside face of the plate. Bearing stiffeners are required at the birdsmouth cut on both sides of the web.

4. When beveled bearing plates are used at I-joists supports, I-joist attachment to the bevel plate must be designed to transfer lateral thrust.

5. End bearing length must be at least 1-3/4 inch. For continuous framing and roof framing with cantilevers, the intermediate support and end bearing adjacent to the cantilever must be at least 3-1/2 inches.

6. Ends of roof joists must be restrained at the bearing to prevent rollover. Rim board or I-joist blocking panels are preferred. Cantilever-end blocking must be placed at the support adjacent to the cantilever, and ends of all cantilever extensions must be laterally braced by a fascia board or other similar methods.

7. Continuous lateral support of the I-joist’s compression flange is required to prevent rotation and buckling. In simple span roof applications, lateral support of the top flange is normally supplied by the roof sheathing. Bracing of the I-joist’s bottom flange is also required at interior supports of multiple-span joists and at the end support next to an overhang. Lateral support of the entire bottom flange may be required in cases of load reversal such as those caused by high wind.

8. Details 10 show only I-joist specific fastener requirements. For other fastener requirements, such as wind uplift requirements or other member attachment details, see the applicable building code.

9. All roof details are valid up to a 12:12 slope unless otherwise noted.

10. Provide adequate ventilation at each joist bay as per detail 10v. Verify roof ventilation and insulation requirements with applicable building code.

11. Refer to typical floor framing installation notes for additional information.
Rated sheathing

Blocking panels not shown for clarity

Temporary construction bracing

See details

Nordic Joist - Typical Roof Framing

Nordic.ca

Nordic Structures

Typical Roof Framing and Construction Details

NS-DC3

Details

Nordic Joist

10

10a 10d 10e

10f 10g

10h 10k 10m 10n 10q

10r 10s 10t 10u 10v

Rated sheathing

Nail according to applicable building code

10

10b 10c 10p

2022-05-01

10

10v 10f 10g

10a 10d 10e

10h 10k 10m 10n 10q

10r 10s 10t 10u 10v

10

10b 10c 10p
Beveled plate for slopes greater than 1/4:12. Attach to framing with one 16d nail at 16” o.c. Code-recognized connectors may be substituted. For slopes greater than 4:12, connectors are required to resist lateral thrust.

8d nails at 6” o.c. - minimum three 8d nails per blocking panel. When used for lateral shear transfer, match nail type and sheathing edge nailing ("boundary nailing" for engineered diaphragm applications).

Blocking panel or 23/32” APA Rated Sheathing 48/24 as continuous closure

Bearing stiffener required when end reaction exceeds 1,550 lbf

Minimum attachment: For slope ≤ 1/4:12, one 10d box nail, face nail at each side of bearing. For slope > 1/4:12 design joist attachment to beveled plate to transfer lateral thrust.

Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
For roof slopes between 1/4:12 and 12:12, provide a tie strap nailed at a minimum of 3" spacing or in accordance with the manufacturer's recommendations.

Ridge beam (Nordic Lam or SCL)

Adjustable slope hanger with a minimum unadjusted uplift capacity of 300 lbf

Beveled bearing stiffener required each side

Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Adjustable slope hanger with a minimum unadjusted uplift capacity of 300 lbf

Beveled bearing stiffener required each side

For roof slopes between 1/4:12 and 12:12, provide a tie strap nailed at a minimum of 3" spacing on each side of roof slope or in accordance with the manufacturer’s recommendations

Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
23/32 Performance Category 48/24 x 2'-0" wood structural panel (front and back sides) with twelve 8d nails into each joist. When roof live load exceeds 40 psf, horizontal orientation of gusset strong axis is required. Gap 1/8" at top.

Support beam or wall

Attach I-joist per detail 10a

Blocking panel per detail 10a

Attach double-beveled plate to framing with one 16d nail at 16" o.c.

Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. Application limited to 4:12 roof slope or less.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Bearing stiffeners required when hanger does not support I-joist top flange

Header may be I-joist, Nordic Lam or SCL

Face-mount hanger per manufacturer's recommendations

Backer block on both sides of web (or backer block and filler block, if multiple I-joists), nail with twelve 10d nails, clinch when possible

Filler block per detail 1p

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Birdsmouth cut shall bear fully and not overhang the inside face of plate.

1/8" gap at top

Birdsmouth cut and Bevel-cut Bearing Stiffeners

Notes:
1. Additional connection may be required for wind uplift.
2. Permitted on low end of I-joist only.

Four 8d nails (two each side, staggered)

One 10d box nail, face nail at each side of bearing (face nail where flange is 7/8" to 1" thick)

Bearing stiffener required each side of I-joist. Bevel-cut bearing stiffener to match roof slope.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

Typical Roof Framing and Construction Details

Birdsmouth Cut and Bevel-cut Bearing Stiffeners

NORDIC STRUCTURES

nordic.ca

DRAWING

10h

CATEGORY

Typical Roof Framing and Construction Details

SCALE

-

DATE

2022-05-01

PAGE

5.9
Notes:
1. Additional connector is required for wind uplift.
2. Outside corner of blocking panel may be trimmed if it interferes with roof sheathing. In such cases, position blocking panel on top plate to minimize trimming and still allow required nailing into top plate.
3. Permitted on low end of I-joist only.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

- Bearing stiffener required each side
- Blocking panel
- Birdsmouth cut at bearing
- Attach I-joist to top plate per detail 10h
- 2x block for fascia support
- 2'-0" maximum

TITLE
I-joist Overhang for Fascia Support with Birdsmouth Cut

CATEGORY
Typical Roof Framing and Construction Details

SCALE
-

DATE
2022-05-01

PAGE
5.11

DRAWING
10k
Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

Blocking panel attached per detail 10a. See detail 10v for vent holes.

Attach I-joist to beveled plate per detail 10h.

Attach beveled plate per detail 10a.

Overhang 2'-0" maximum

Typical Roof Framing and Construction Details
Notes:
1. Additional connection may be required for wind uplift.
2. Blocking panel required at bearing for lateral support.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.

Nordic Structures
nordic.ca

Typical Roof Framing and Construction Details

Title: Outrigger

Drawing: 10p

Category: NS-DC3

Scale: -

Date: 2022-05-01

Page: 5.14
Beveled plate attached per detail 10a.

Blocking panel attached per detail 10a. See detail 10v for vent holes.

Attach I-joist to beveled plate per detail 10h

2'-0" maximum

Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Additional connection may be required for wind uplift.
2. Lumber overhang shall be 2x4 S-P-F No. 2 or better.
3. Blocking panels not shown for clarity.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. Additional connection may be required for wind uplift.
2'-0" maximum
Attach I-joist
per detail 10h
Beveled plate
attached
per detail 10a
2x block for fascia
support (cut to fit)
Blocking panel attached per
detail 10a. See detail 10v for
vent holes.
Attach per detail 10s

Note:
1. Additional connection may be required for wind uplift.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Allowed at low end of I-joist only.
2. Corrosion-resistant wire cloth screening, hardware cloth, perforated vinyl or similar material shall cover the ventilation holes per code.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page viii for diameters. Individual components not shown to scale for clarity.
Notes:
1. Corrosion-resistant wire cloth screening, hardware cloth, perforated vinyl or similar material shall cover the ventilation holes per code.
2. The maximum allowable round hole diameter for a lateral restraint-only blocking panel shall be 2/3 of the lesser dimension of blocking panel depth or length.
3. Whenever possible, field-cut holes should be centered in the blocking panel both vertically and horizontally.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.
Note:
1. A minimum of 1/8 inch should always be maintained between the top of the hole and the I-joist flange.

All nails shown in the details are assumed to be common nails unless otherwise noted. Refer to page vii for diameters. Individual components not shown to scale for clarity.