

Nordic X-Lam Industrial CLT Matting Nordic Structures

PR-L331

Revised December 18, 2025

Products: Nordic X-Lam Industrial CLT Matting
Nordic Structures, 1100 Avenue des Canadiens-de-Montréal, Suite 100, Montreal, Québec
H3B 2S2, Canada
(514) 871-8526
www.nordic.ca

Basis of the product report:

- ANSI/APA PRG 320-2025 Standard for Performance-Rated Cross-Laminated Timber
- APA Custom Product Specification L-375, Industrial CLT Matting
- 2024 ANSI/AWC NDS, National Design Specification for Wood Construction

2. Product description:

Nordic X-Lam industrial cross-laminated timber (CLT) matting is manufactured with Spruce-Pine-Fir (mainly Black Spruce) lumber in accordance with the IND-331 and custom grades of ANSI/APA PRG 320 through product qualification and/or mathematical models using principles of engineering mechanics. Nordic X-Lam industrial CLT matting shall be limited to industrial applications and is not intended for use in timber structures or similar constructions, except for spanning over a short opening (up to 18 times the CLT thickness) recommended by the manufacturer. Nordic X-Lam industrial CLT matting is manufactured in a plank billet with nominal widths of 12 to 106-1/4 inches, thicknesses of 3 to 15 inches, and lengths up to 64 feet.

3. Design properties:

Nordic X-Lam industrial CLT matting shall be designed with the design properties and capacities provided in Tables 1, 2, and 3, when used in different moisture conditions, or with the recommendations provided by the manufacturer (www.nordic.ca). The design adjustment factors shall be based on Table 10.3.1 of the ANSI/AWC National Design Specification for Wood Construction (NDS) and the recommendations provided by the manufacturer.

Design values for the Load and Resistance Factor Design (LRFD) used in the U.S. for Nordic X-Lam industrial CLT matting can be derived from the ASD values published in Tables 2 and 3 of this report in accordance with Tables 10.3.1, N1, N2, and N3 of the NDS.

Product installation:

Nordic X-Lam industrial CLT matting shall be installed in accordance with the recommendations provided by the manufacturer (see link above).

Limitations:

- a) Nordic X-Lam industrial CLT matting shall be designed in accordance with the National Design Specification for Wood Construction using the allowable design properties specified in this report.
- b) Nordic X-Lam industrial CLT matting shall be limited to industrial applications and is not intended for use in timber structures or similar constructions, except for spanning over a short opening (up to 18 times the CLT thickness) recommended by the manufacturer.
- c) Nordic X-Lam industrial CLT matting shall be manufactured in accordance with custom Nordic X-Lam industrial CLT matting specification IND-331 documented in the in-plant manufacturing standard approved by APA.

- d) The design values recognized in this report are limited to new products. The effect of re-use on the design values is beyond the scope of this report.
- e) Nordic X-Lam industrial CLT matting is produced at the Nordic Structures, Chibougamau, Quebec facilities under a quality assurance program audited by APA.
- f) This report is subject to re-examination in one year.

6. Identification:

Nordic X-Lam industrial CLT matting described in this report is identified by a label bearing the manufacturer's name (Nordic Structures) and/or trademark, the APA assigned plant number (1112), the APA Custom Product Specification (L-375), the APA logo, the industrial CLT matting grade and thickness (or layup ID), the report number PR-L331, and a means of identifying the date of manufacture.

Table 1. ASD Reference Design Values^(a,b) for Lumber Laminations Used in Nordic X-Lam industrial CLT Matting (for Use in the U.S.)

	able 1. The Profession Bengin value 101 Earth of Earth nations Code in Trosale 7. Earth industrial GET Mattering (101 Get in the Giet)																	
		La	minations U	sed in Ma	ajor Strei	ngth Dire	ection		Laminations Used in Minor Strength Direction									
CLT Grade	Grade & Species	F _b (psi)	E (10 ⁶ psi)	F _t (psi)	F _c (psi)	F _v (psi)	F _s (psi)	F _{c⊥} (psi)	G	Grade & Species	F _b (psi)	E (10 ⁶ psi)	F _t (psi)	F _c (psi)	F _v (psi)	F _s (psi)	F _{c⊥} (psi)	G
IND-331	1950f- 1.7E SPF	1,950	1.7	1,375	1,800	135	45	425	0.42	No.3 SPF	500	1.2	250	650	135	45	425	0.42
Wet-use factor	NA	0.85	0.90	1.00	0.80	0.97	0.97	0.67	(c)	NA	0.85	0.90	1.00	1.00	0.97	0.97	0.67	(c)

For SI: 1 psi = 0.006895 MPa

⁽a) Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS. The design values shall be used in conjunction with the section properties provided by the industrial CLT matting manufacturer based on the actual layup used in manufacturing the industrial CLT matting panel (see Tables 2 and 3).

⁽b) The tabulated allowable design values are for dry conditions of use where the average equilibrium moisture content of solid-sawn lumber is 19% or less. For wet conditions of use where the average equilibrium moisture content of solid-sawn lumber exceeds 19% for an extended period of time, multiply the tabulated values by the wet-use factors shown at the bottom of the table.

⁽c) Connection design using the specific gravity (G) in wet-use conditions shall follow Table 11.3.3 of the NDS.

Table 2. ASD Flatwise Bending Reference Design Values^(a,b) for Nordic X-Lam Industrial CLT Matting Listed in Table 1 (**Dry Conditions**) (for Use in the U.S.)

	Layup ID ^(d)	Thick- ness, t _p (in.)		Lam	ination Thi	ckness (in.) in CLT La	ayup			Major Stren	gth Direction		Minor Strength Direction				
CLT Grade ^(c)			=	\vdash	=	Т	=	Т	=	(F _b S) _{eff,f,0} (lbf-ft/ft)	(EI) _{eff,f,0} (10 ⁶ lbf- in. ² /ft)	(GA) _{eff,f,0} (10 ⁶ lbf/ft)	V _{s,0} (lbf/ft)	(F _b S) _{eff,f,90} (lbf-ft/ft)	(EI) _{eff,f,90} (10 ⁶ lbf- in. ² /ft)	(GA) _{eff,f,90} (10 ⁶ lbf/ft)	V _{s,90} (lbf/ft)	
	78-3s	3 1/8	1 1/64	1 1/16	1 1/64					2,525	48	0.34	1,110	95	1.4	0.47	380	
	89-3s	3 1/2	1 3/8	3/4	1 3/8					3,350	72	0.48	1,260	45	0.51	0.39	270	
	105-3s	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	1,490	160	3.1	0.61	495	
	131-5s	5 1/8	1 1/64	1 1/16	1 1/64	1 1/16	1 1/64			5,800	184	0.69	1,860	790	36	0.94	1,130	
	140-4s	5 1/2	1 3/8	1 3/8 x2	1 3/8					7,325	248	0.54	1,980	630	25	1.2	990	
	140-4I ^(e)	5 1/2	1 3/8 x2	1 3/8	1 3/8					7,150	261	0.70	1,980	160	3.1	0.67	495	
	143-5s	5 5/8	1 3/8	3/4	1 3/8	3/4	1 3/8			7,725	267	0.96	2,030	615	26	0.78	1,040	
IND-331	175-5s	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	0.92	2,480	1,370	81	1.2	1,490	
	197-7s	7 3/4	1 3/8	3/4	1 3/8	3/4	1 3/8	3/4	1 3/8	13,725	654	1.4	2,800	1,410	101	1.2	1,800	
	213-71	8 3/8	1 3/8 x2	3/4	1 3/8	3/4	1 3/8 x2			18,700	963	1.6	3,025	615	26	0.93	1,040	
	220-7s	8 5/8	1 3/8	1 1/16	1 3/8	1 1/16	1 3/8	1 1/16	1 3/8	15,975	853	1.4	3,125	2,190	187	1.5	2,130	
	245-7s	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,475	3,150	313	1.8	2,480	
	245-71	9 5/8	1 3/8 x2	1 3/8	1 3/8	1 3/8	1 3/8 x2			23,700	1,404	1.4	3,475	1,370	81	1.3	1,490	
	267-91	10 1/2	1 3/8 x2	3/4	1 3/8	3/4	1 3/8	3/4	1 3/8 x2	28,325	1,831	2.0	3,775	1,410	101	1.3	1,800	
	315-91	12 3/8	1 3/8 x2	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8 x2	36,700	2,794	1.8	4,450	3,150	313	1.9	2,480	

For SI: 1 in. = 25.4 mm; 1 ft = 304.8 mm; 1 lbf = 4.448 N

⁽a) Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS. The tabulated allowable design values are for dry conditions of use where the average equilibrium moisture content of solid-sawn lumber is less than 16%.

⁽b) Reference design values must be adjusted, as applicable, in accordance with Section 10.3 of the NDS.

⁽c) The CLT layups are developed based on ANSI/APA PRG 320, as permitted by the standard.

⁽d) The layup designation refers to the panel thickness (expressed in mm), the number of layers, and the layup combination ("s" for standard perpendicular layers, and "I" for doubled outermost parallel layers).

⁽e) This layup is not balanced (the top and bottom layers are different in the layer thickness), which shall be considered in design and installation based on the manufacturer's recommendations.

Table 3. ASD Flatwise Bending Reference Design Values^(a,b) for Nordic X-Lam Industrial CLT Matting Listed in Table 1 (Wet Conditions) (for Use in the U.S.)

	Layup ID ^(d)	Thick- ness, t _p (in.)		Lam	ination Thi	ckness (in.) in CLT La	ayup			Major Stren	gth Direction		Minor Strength Direction				
CLT Grade ^(c)				Т	=	Т	=	Т	=	(F _b S) _{eff,f,0} (lbf-ft/ft)	(EI) _{eff,f,0} (10 ⁶ lbf- in. ² /ft)	(GA) _{eff,f,0} (10 ⁶ lbf/ft)	V _{s,0} (lbf/ft)	(F _b S) _{eff,f,90} (lbf-ft/ft)	(EI) _{eff,f,90} (10 ⁶ lbf- in. ² /ft)	(GA) _{eff,f,90} (10 ⁶ lbf/ft)	V _{s,90} (lbf/ft)	
	78-3s	3 1/8	1 1/64	1 1/16	1 1/64					2,150	43	0.31	990	80	1.3	0.42	340	
	89-3s	3 1/2	1 3/8	3/4	1 3/8					2,850	65	0.43	1,120	40	0.46	0.35	240	
	105-3s	4 1/8	1 3/8	1 3/8	1 3/8					3,850	104	0.42	1,320	135	2.8	0.55	440	
	131-5s	5 1/8	1 1/64	1 1/16	1 1/64	1 1/16	1 1/64			4,950	166	0.62	1,650	670	32	0.85	1,000	
	140-4s	5 1/2	1 3/8	1 3/8 x2	1 3/8					6,225	223	0.48	1,760	535	22	1.1	880	
	140-4I ^(e)	5 1/2	1 3/8 x2	1 3/8	1 3/8					6,075	235	0.63	1,760	135	2.8	0.60	440	
	143-5s	5 5/8	1 3/8	3/4	1 3/8	3/4	1 3/8			6,575	241	0.86	1,800	525	23	0.70	920	
IND-331	175-5s	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,850	396	0.83	2,200	1,160	73	1.1	1,320	
	197-7s	7 3/4	1 3/8	3/4	1 3/8	3/4	1 3/8	3/4	1 3/8	11,650	589	1.3	2,480	1,200	91	1.0	1,600	
	213-71	8 3/8	1 3/8 x2	3/4	1 3/8	3/4	1 3/8 x2			15,900	867	1.4	2,675	525	23	0.84	920	
	220-7s	8 5/8	1 3/8	1 1/16	1 3/8	1 1/16	1 3/8	1 1/16	1 3/8	13,575	767	1.2	2,775	1,870	168	1.3	1,890	
	245-7s	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,625	980	1.2	3,075	2,675	281	1.7	2,200	
	245-71	9 5/8	1 3/8 x2	1 3/8	1 3/8	1 3/8	1 3/8 x2			20,150	1,263	1.3	3,075	1,160	73	1.2	1,320	
	267-91	10 1/2	1 3/8 x2	3/4	1 3/8	3/4	1 3/8	3/4	1 3/8 x2	24,075	1,648	1.8	3,350	1,200	91	1.2	1,600	
	315-91	12 3/8	1 3/8 x2	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8 x2	31,200	2,515	1.7	3,950	2,675	281	1.7	2,200	

For SI: 1 in. = 25.4 mm; 1 ft = 304.8 mm; 1 lbf = 4.448 N

⁽a) Tabulated values are allowable design values and not permitted to be increased for the lumber size adjustment factor in accordance with the NDS. The tabulated allowable design values are for wet conditions of use where the average equilibrium moisture content of solid-sawn lumber is 16% or greater.

⁽b) Reference design values must be adjusted, as applicable, in accordance with Section 10.3 of the NDS.

⁽c) The CLT layups are developed based on ANSI/APA PRG 320, as permitted by the standard.

⁽d) The layup designation refers to the panel thickness (expressed in mm), the number of layers, and the layup combination ("s" for standard perpendicular layers, and "I" for doubled outermost parallel layers).

⁽e) This layup is not balanced (the top and bottom layers are different in the layer thickness), which shall be considered in design and installation based on the manufacturer's recommendations.

APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by ANSI National Accreditation Board (ANAB), and an accredited testing organization under ISO/IEC 17025 by ANAB. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, Validation Entity, and Product Evaluation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION

HEADQUARTERS

7011 So. 19th St. • Tacoma, Washington 98466 Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org.

PRODUCT SUPPORT HELP DESK

(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER

APA Product Report® is a trademark of *APA – The Engineered Wood Association*, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. No warranties, express or implied, including as to fitness for a particular purpose, are made regarding this report. Neither APA nor its members shall be liable, or assume any legal liability or responsibility, for damages, direct or indirect, arising from the use, application of, and/or reference to opinions, findings, conclusions or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.